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THE SECOND CENTRALIZER OF A BERNOULLI
SHIFT IS JUST ITS POWERS

BY
DANIEL J. RUDOLPH

ABSTRACT

It & is a collection of measure preserving transformations of a probability
space, by C(%), the centralizer of %, we mean the group of all measure
preserving transformations S such that TS = ST for all T € . We show here
that if T is a Bernoulli shift, then C(C(T)) = {T* | i € Z}. The proof is carried
out by constructing an action of Z7, {T}= T’zf i,j €Z}, where T, is a Bernoulli
shift of arbitrary entropy, but for any j# 0, C({T,, T5}) = {T'°T5 Lk €Z}. The
construction is a two-dimensional analogue of Ornstein’s “rank one mixing”
transformation.

I. Introduction

If 7 is a collection of measure preserving transformations of a probability
space, by C(J), the centralizer of J, we mean the group of all measure
preserving transformations S such that TS = ST for all T € 7. What we want to
show is that if T is a Bernoulli shift then

(1.1) C(C(T)={T'|i€ Z}.

The way we will show this is by constructing explicitly a Z* action generated by
two maps, T, and T, where T; is a Bernoulli shift of arbitrary entropy and for
any j#0,

(1.2) CAT, TiH={Ti-T5|Lk € Z}.

As {T!°T%|Lk € Z}CC(T), this implies C(C(T))C{T!T%|Lk € Z}. This
reduces C(C(T,)) almost to what we want. All that remains is to show that for no
j#0is T} € C(C(Th)). As T, is a Bernoulli shift it has a square root T}? € C(T)).
If Ti € C(C(T)) then Ti*€ C({T,, Ti}) conflicting with (1.2).

Ornstein in [1] and Polit in [4] have shown how to build a Z action T so that
C{T'})={T'|i € Z}, for any j# 0. We will borrow their method and extend it
to a two-dimensional construction. If (1.2) were all we asked, the construction
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168 D. J. RUDOLPH Israel J. Math.

would be quite easy. We ask also, though, that T, be a Bernoulli process whose
entropy is at our disposal. This last condition especially adds complexity to the
construction.

I1. Building the process

Our construction will take the form of an increasing sequence of rectangular
arrays A, of symbols from P = {0, S, B}. The (n + 1)-th array will be built out of
many copies of the n-th array, situated in various positions in a matrix of spacers
S. These arrays convert in a standard manner to a two-dimensional process
(T,, T>, P) on which the T, T,, P-name of a point is a nested sequence of copies of
these arrays.

We will now describe inductively how to build the A,. The array A, is an h,(0)
by h,(0) rectangle of 0’s. The parameters h,(0) and h,(0) will be fixed later to
control the entropy of T:. Now suppose we have built A,, with dimensions h,(n)
by hy(n). To build A.., we will need some further parameters. The first of these
are Si(n +1), §;(n+1) and Ny(n + 1). We will set their values later. For any
0=0=S(n+1)and 0= 0, = S,(n + 1), A7*"2is a copy of A, with a border of
o1 S’s on its left, (Si(n + 1)~ o) $’s on its right, o, S$’s on top and (Sx(n + 1) —
o) S’s on bottom. This we will call an (n + 1)-box with an A, init. Let L(n +1)
be the set of all sequences ! = {(c}1,03), (03,03), -, (", 0} "* D)} of length
Ni(n +1) from Sy(n + 1) x Sx(n + 1). Now

Al = A%.926 A01 030,00 A 0T, 020D

i.e., arow of Ny(n + 1) (n + 1)-boxes, each containing an A,, the j-th situated at
position o, o'}. Notice that fixing a name across k boxes, the (k + 1)-th box can
be any A7, allowing a certain independence of the T; past. We will see later
that if §;(n + 1) and Sa(n + 1) are large enough, this will make T; a Bernoulli
shift.

Now let £(n+1)={Li(n +1)---Ly(n + 1)}, s = (Si(n + 1)Sx(n + 1))"*V1, be
all possible orderings of the elements of L(n + 1), and now

Al

i
Az
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where L; = (I,,1;, -+, L), u =(S)(n +1) Sx(n + 1))M"*Y. Now, finally, to build
A,.,, we choose a parameter N,(n +1) and sequence L;,L;,---,L
elements from Z£(n +1). A.., is

Ny +1) Of

iy
A
o

12
A

]

L]

Asz(n+l)

n+1

with a row of b’s on the left side and bottom.

We use this method of concatenating A,’s vertically because it guarantees we
see in any span of 2"°"*"(Sy(n + 1) Sy(n + 1))V rows of (n + 1)-boxes in A..,
all possible A }’s distributed with 1/2'“"*? of uniformly. This will allow Sx(n) to
grow fast enough to make T, Bernoulli without growing so fast as to force infinite
entropy. If we simply concatenated a “random” sequence of A,’s, the central
limit theorem says we would need to scan the square of this many rows to get
such a good distribution. This is too large a value for Six(n) to give both
properties.

At this point the only conditions we put on Si(n), Sx(n), Ni(n) and No(n)
are that

S]!n! 1 stn! 1
(21) hl(n — l) < 216n and hz(n _ 1) < 216n

to ensure T; and T, are defined on a probability space.

III. Choosing the parameters so that T, is Bernoulli of arbitrary entropy

As we indicated earlier, it is necessary to exercise a little care at this point as
the properties we want for T, can be antagonistic. We have a further small
difficulty in that T, has no obvious generating partition. To verify T, is Bernoulli
we will take a sequence of partitions P, which refine to all of the o-algebra of
measurable sets and verify (T, P) is very weak Bernoulli for all / and then apply
Ornstein’s Monotone Theorem. The partition P, will be the division of () into
sets of @ whose (T, T, P) name has zero point at the same coordinates in A,
and the complement of these sets. Certainly V7., P, is the o-algebra of
measurable sets and P,,, D P,.
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Now we require that
3.D Si(n+1)z2""(h,(n — 1)+ Si(n)) and
(3.2 Sa(n + 1) = 2" (8,(n)So(n)™ ") (hao(n — 1) + Sx(n)),

for n large enough. These are explicitly how fast S;(n) and Sz(n) need to grow to
guarantee T; is Bernoulli. To keep (2.1) we, thus, need N,(n), Nx(n)>2"". To
verify that (T, P) is v.w.b., we must consider what a future Ti, P, distribution
looks like on a fixed past atom. We begin this analysis as follows. Let B be a
fixed Ti, P,name across the first k n-boxesin AL, n =+ 2. Let Bbea possible
continuation of B across the (k + 1)-th n-box in A,.

Lemma 3.1.  The distribution of possible B, for all but 27" of the B is any name
from across A._, situated at any position 0 = o, = S(n), each such occurring with
within a fraction 27" of the same density.

Proor. Ignore those B which occur more than 27*" of the time within Sx(n)
of the top and bottom of the n-boxes. This is at most 27" of the B. For any
other, consider its occurrences at some fixed height in the boxes. Now the value
(at", o57") of the next box takes on any values up to (S:(n), Sx(n)) each equally
likely. By 3.2, the value S,(n) is large enough to scan at least (2'*" — 2) full cycles
of types of rows A,_,. Thus, each possible name across A,_; is seen and with

within a fraction 27'*" of the same density.

CoroLLarY 3.2, For all but 27°" of the T\, P: names B across the first k boxes of
A,, n=1+2, the distribution of possible names B across the remaining Ni(n)— k
boxes is within 27" in d of the independent concatenation of the distribution of
names across A, -, situated in n-boxes independently at positions 0 = g, = S\(n).

Proor. Foliows from repeated application of Lemma 3.1 across the remain-
ing Ny(n)— k n-boxes.

CoroLLARY 3.3. Let B be a fixed past T\, P, name, ending after the first k boxes
of A,, n = | +2. The distribution of possible future names B across the remaining
(N:i(n)— k) n-boxes, for all but 27" of the B, is within 27°**' in d of the
independent concatenation of the distribution of T,, P, names across A, -, situated
independently at positions 0= o, = S,(n) in n-boxes.

Proor. Apply Lemma 3.1 inductively to ever longer past names across
arrays, summing the errors.
Now we know what future names look like. It remains to show that S,(n) is
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large enough to get them all close in d. Here we apply the “nesting argument”
Ornstein used in [3] and Weiss applied to the equivalence theory in [5].

Let B, and B, be past atoms of (T;, P). Suppose B, ends j, positions into the
k,-th n-box of A,, and B, ends j, positions into the k,-th n-box where n = [ +2
and k; =Ny(n)(1-2""), and B, and B extended across the remaining
hi{n — 1)+ Si(n)~—j, and h,(n — 1) + S)(n) — j. coordinates in the k,-th and k»-th
n-boxes are in the good set of Corollary 3.2. We want to match in d the future
distributions of B, and B, out to the end of the overlap of the A,’s they lie in,
i.e., for length

(3.4 L = min (hy(n) = ki(hy(n = 1)+ S(n)) - ji).

By Corollary 3.2 this amounts to showing that the independent concatenation
more than 2% times of the distribution of names across A,_, situated indepen-
dently in n-boxes at positions 0 = o = Sy(n) is close in d to itself shifted by
[ji— 2| places.

This pairing of coordinates along the distributions breaks into overlaps of
n-boxes, half of which are longer than i(h(n — 1)+ Si(n)). On these longer
overlaps, as S,(n)=2'""(h,(n —2)+ S,(n)), we can pair all but 27" of the
positions o, in the first n-box with o'} in the second n-box so that in this overlap
(n — 1)-boxes across the name from A,_, align with each other. Thus, on these
sections we can match the two distributions within 27** in d. On the remaining
sections, less than half the coordinates, the positions of (n — 1)-boxes are now
fixed, but everything inside the (n — 1)-boxes is independent of what we have
done. On each of these sections re-apply the argument, but on (n — 1)-boxes, to
match within 27" " a further quarter of the coordinates. Continue down to
(n —2)-boxes and so on. If n = 2(I + 2), after n/2 iterations, on all but 27" of
the coordinates, we have matched in d to within 27/, All but 27***" of the past
atoms B; satisfy Corollary 3.3 and end 27*" from the edges of A,. This shows
(T, P) is v.w.b. and completes the following theorem.

THeOREM 3.1.  The transformation T, is isomorphic to a Bernoulli shift.

Proor. By the above, (T;, P) is v.w.b. for all . The P’s refine to the full
algebra of measurable sets. By Ornsteins Monotone Theorem (2), T) is
Bernoulli.

Our next task is to compute h (T}), the entropy of T;. As we have no generator
for T, it is again necessary to compute h(T,P), and use the fact that
() = lim;_. h (T, P).

By our argument that (T, P;) is v.w.b. we know that for large enough n, (T}, P)
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is as close as we like in d and, hence, entropy to the independent concatenation
of the distribution of T}, P,-names across A,_, in n-boxes situated independently
at positions 0 = o, = S,(n). The entropy of this latter process is

lim 1 [ln(h (n = 1)+ Si(n)) ((Sl(n)2" (ais..mossA,._.)) [E—i_—J )]

N_,a, i(n - 1)+ 8;(n
(3.5)
_ h(dist. across A,-;)
hi(n — 1)+ Si(n)

The distribution of names across A,.; is the independent concatenation of
names across A,_,, situated in boxes at positions 0 = o, = S;(n — 1). Hence,

h (dist. across A,_1) = Niy(n — 1) In(Sy(n — 1)- 2" st 2cros A0y
= Ni(n - DIn(S:(n — 1))+ Ni(n — 1)h (dist. across A,_,).

So (3.5) is equal to
Ni(n = DIn(S;(n - 1)) + Ni(n ~ 1A (dist. across A,.,)

hi(n~1)+ S\(n) hi(n— 1)+ Si(n)
(3.6)
hin—1) ( In(Si(n-1)) h (dist. across A,._,) >
hn—1)+Sy(n) \h(n -2)+Si(n—1)  h(n-2)+S(n-1)/"

Continuing inductively down to [ +2, (3.6) is equal to

( n-1 ha(i) ) (Mdist.across AHQ)

l:1

ri)+ S+ 1)) \m+D+s(0+2)
(3.7)
EN hy(i) In (S.(i))
t 2 m() + S+ 1) <h,(i n 1)+Sl(i)> :
Thus,
(0 h (dist. across A,.,)
h(T., P) = ( H l(z)+s (i+ 1)> h(1+1)+ S,(1+2)
(3.8)
2 ha(i) In (S.(i))
; mii)+ Si(i + 1) (hl(i 1+ s,(i)+1)‘
By (1.1),
ha(i
»U)h O+8G+10°

and
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S0 n(S.G) ).,
2 () + S +1) <h1(i D+ Sl(i)) <
SO
69 HD-imar )= it el s

Now to show that this value can be arbitrary.

Ignoring the small parts of A, near the borders of the boxes,
h(dist. of P, across A,.,) is close to In [(ha(I) + So(I + 1))S,(1 + 1)S(I + 1))M** )
and so (3.9) is equal to

i (ln (o) + S:(1+1)) , Nu(l+1)In (Si(I + DS, + 1)))

e V(I + 1)+ 8,1 +2) h(+1D+S,(1+2)
(3.10)
_ e In(S(l+1))
= Jim- .
- h(l)
By (3.2),

In (Sol + 1) _ In [Ki i Si(DSAD)OYha(l — 1) + S:(1))]
h() X0)

where all we require of K;., is that it is = 2'%*" for large enough . Notice this is
independent of how large Ny(!) is. But this is

In (Kp)+In (1= D+S:(1) , (1), In(Si()

h(l) -1+ S() " (- 1)+S()
Now
o (bl =D+S() , _In(S() _ 1
X0 -1+ S() = 29"
Thus

n(sz(1+1))_( h(l-1) (ngszgz)) JRLICION
O hl(1—1)+s,(1)) h,(l—l)) ) "%

where a, < 1/2'** depends only on parameters up to the I-th, and (In (Ki.1))/h(1)
can be as small as we like up to a point, after which it can be any value = 27'%
Thus, choosing the K., properly, and h,(0), hx(0), Si(1) and Si(1),
lim,_... [(In (S(1)))/h:({ — 1)] can be made to converge to any value we like in
(0,%], and this can be done even with Ny(n) growing as rapidly as we like. This
completes the following result.
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THEOREM 3.2. The entropy of T, can be chosen arbitrarily, even with the
parameter N,(n) growing as rapidly as we like.

IV. Forcing C(T,,T%), j# 0 to be trivial

This argument is essentially a direct translation into Z* of the proof for a
similar Z action in [1] and [4]. Thus, at points in the argument where standard
techniques are used we will be brief.

At this point what remains at our disposal in the construction is that Nx(n) can
be made as large as we like, and the sequence L;,, L,,---,L;. ., of elements of
Z(n) (= the set of possible vertical cycles through the various rows of n-boxes

L =A% -.0 A7+ 93“”) remains to be chosen. We will choose these
parameters to force C{T,, T{})={Ti°T5|l;k € Z} for any j#O0.

The idea here is to choose Ny(n) and L;,, - -+, L., inductively so that any two
different rectangular sections of A, of sufficient size have T), T,, P-names
bounded apart by some fixed constant in d. This forces any finite coding of a T;,
T;, P-name to within this bound in d of another T, T,, P-name to be simply a
shift of this name by some vector (I, k). This is enough for C({T;, T}) and a little
more care gives the result for C({T, Ti}).

LemMa 4.1.  The parameters Non), L;,,--+,Lj,,., can be chosen so that for any
t, L i and k, No(n) =t > Ny(n)27',

0<l<n!,
0<i=Nyn)-tl and
0<k<i,
the sequence of pairs
Ly, Lii~k.)’ (Liveis Livsis v+ s (L Ly

is within 27" of uniformly distributed over £(n)x ¥(n), and the sequence
L, L., -+, L., is within 27" of uniformly distributed over ¥(n).

Proor. The set Z(n) is now fixed and contains s elements. Consider the set
of all sequences of length N, of elements from £(n), with the counting measure.
Fix values ¢, I, i and k as above. Look at the sequence of pairs

(Lin Lii—k )’ (L}'un Lii+f—k )v T (Lin'n L;'im—k) .

This can be broken into two disjoint subsequences, each at least ¢/3 long, in each
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of which no L; occurs more than once. Now what is the probability on such a
‘" of uniformly distributed? Each
term in the subsequence is independent of all the others, so this probability
computes to be bounded by

subsequence that the pairs are not within 27

(4 1) 2N2HN22(;‘(5—2(172—-1671)‘572(14_2—16"(52,1)71)'.._‘S*2(1+2*16n(52_1)*1))_;,(3—2’572'__A‘s—2))N22716n371
where 8”27)0' But
2

R(S(1 =27, §2(A + 27 (8~ 1)), -+, S (1 + 27 (§2 - 1) "))
-h($%87%---,8%<0.

Thus, there are constants C and y <0 so that (4.1) is bounded by C -2
Now the probability that there exists ¢, [, i and k so that the desired condition
on pairs is not satisfied is thus at most

42 2-n!-N3-C2™.

This goes to zero as N,—». Hence, if N, is large enough, we can find the
necessary sequence. The second condition follows from the first.
Choose Ny(n), L, -+, L., to satisfy this lemma.

Lemma 4.2. There is a fixed constant a >0 so that any two different
rectangular subarrays of at least 27°" of A, are at least a apart in d.

Proor. In the overlap of two copies of A, which do not line up exactly there
is always a d difference of at least 2(h,(0) + h2(0) — 1)/h1(0)h2(0).

Suppose any time we look at two rectangular sections of A, which occupy at
least 27 of A,, they differ in d by @.. We want to bound a,., in terms of a,.

—8{n+1) Of

Consider the d distance between two rectangular sections of at least 2
A,.i. All but at most 3:27* of this double name is made up of rectangular
overlaps of at least 2 of copies of A,. A copy of A, in one name overlaps at
most four copies in the other. Consider separately each subset of one quarter of
the overlaps which are between the A,’s in (n + 1)-boxes in A,., at positions
(i,j) and (i+1Lj+1'), I and I’ fixed. There are various cases. (i) If /<
hy(n)+ Sy(n+1) and I' < hy(n)+ Sx(n +1), then these overlaps are between
copies of A, in exactly the same (n + 1)-boxes in A,.,. In these boxes the shifts
(01, 02) are identical. As [, I’ # 0, in such a set of overlaps of A,’s, the d distance
between the two rectangles is at least a.. (ii) If { = hi(n)+ Si(n+1) but
I'< hy(n)+ Sy(n + 1), the overlaps are between different (n + 1)-boxes in the

same row across A,... As 27**? of A,., must overlap parts of 27"*? of the full
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cycles of possible rows, in this subset of overlaps we will see all possible positions
(01, 2) matched with (o, o'3), each with within 27'%"*? of the same probability.
At most (Si(n + 1)Sy(n + 1)) /(1 + 27'*"*") of these, then, can have their copies of
A, matching exactly. On the rest there is again a d distance of at least a,. (iii) If
I'> hy(n)+ Sy(n + 1) but <(ho(n)+ Sx(n + 1))Si(n + 1)Sz(n + 1))V then a
part of the overlapping (n + 1)-boxes still both lie in the same A %.,. Look at only
this part of the overlap. Now consider a subset of overlaps where each of the
(n + 1)-boxes in the first rectangle lies at the same relative position as all the
others in the A’,, containing it. A rectangle 27*"*" of A,., contains parts of
27%*D of the A .. On this sequence, by our choice of parameters in Lemma 4.1,
each L; is given about equal density. Thus, for each of the sets of (n +1)
boxes we consider, only at most (Si(n + 1)Sx(n + 1))"'(1 + 27'**) can have copies
of A, matching exactly. On the rest we get a d distance of at least a,. (iv) On the
remaining boxes in case (ii), or if >
(hon)+ Sa(n + DYS:(n + 1)S(n + 1))M"*D) the (n +1)-boxes which overlap
each other lie in different cycles A %1.,, A%, Consider a subset of overlaps where
k is fixed. This splits the overlaps of (n + 1)-boxes into two sets, each a sequence
of pairs with types of the form (L;, L;..), (Li.., Li,ou) " (Ljess Lirid )y 12
27%"Ny(n). By our choice, from Lemma 4.1, these pairs are nearly equidistributed
over all the possible pairs. This says that at most (Si(n + 1)Sx(n + 1)) /(1 +27'")
of the overlaps have copies of A, matching exactly. On the rest they are again a,
apart in d.
Combining cases (i) through (iv) we see that

A Za,(1-3-27" = (S,(n+1)S;(n+1))'(1-27"-27%))
Za,(1-3:27"=-27"(1-2""=-2"%)).
This is enough to bound a, uniformly away from 0, and completes the proof.

THEOREM 4.1. If S commutes with both T, and T, j#0, then S = T'o T% for
some | and k.

Proor. To start with, assume j = 1. Approximate S to within a*-10"2 in d
by a finite coding of T,, T,, P-names, i.e., the set in P that $™'(w) lies in is
determined all but a*- 107" of the time by which setin V). n VY. _yT1e T3(P) w
belongs to, for some N large enough. Look at the occurrences in the T, T,
P-name of a point  of copies of A,, where h,(n), ho(n)>4-10"N -a~*. All
but a?-107° of these finitely code to within a>-10™°in d of their true image name
under S. All the finite codings are within a*- 107" of identical in d. Copies of A,
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16n

occupy all but 27" of both the image and preimage names. Hence, an A,
preimage covers, most of the time, pieces of copies of A, in the image. These
pieces, four at most, are rectangular, and most of the time, larger than 27" of an
A,. By Lemma 4.1, all such images, where the preimage codes well, are of
exactly the same part of an A, Thus, on all but (a®-107°+27*") of all but
a®-107°4+ 2% of the A,, the rectangular pieces in the image of this A, are the
same. Now look at an A,., which has a fraction a®-107°+27*" of the A, ’s in it
coding to the same rectangular pieces. If there is more than one rectangular
piece in this overlap, our choice in Lemma 4.1 says that, if n is large enough, this
large a fraction of pairs of n-boxes a fixed vector apart cannot have their copies
of A, afixed vector apart. We conclude that an A, which finitely codes this well
codes to a shift of an A, By some vector (I, k,), I, <(a®-107°+27*")h,(n),
k., <(a®-107+27*" ) hy(n).

If I, and k, are constant, we are done. Look at a copy of A, which codes to a
shift of itself by (l..1, k...) and for which all but a”- 107 of the copies of A, in it
code to shifts of themselves by ([, k.). As a shift by (I, k.) of A, covers all but
(a?-107°+27*") of an A,, we conclude that a shift of A,,, by T/ ™' Ty
differs from itself in d by at most (a?-107*+ a*-107°+ 2™ 4+ 2a2- 10 < a.
Hence [, =1, and k,.,= k. by Lemma 4.2.

To extend this to larger values of j, consider an S € C (T, Té) and finite codes
of Ty, Th, Vf:o T;(P) names which approximate S in d. Such names cross a copy
of A, in j different ways, each one of which might code to a different part of an
A.. As before, though, a fixed way of crossing A, must, most of the time, code to
precisely the same part of an A,.

Now look at an A,; which codes well, most of its A,’s coding well. We restrict
ourselves to subsequences Afﬁ+l,Aﬁijl, . -,A',fi";, of the cycles of rows in the
preimage name of the overlap, all crossed in exactly the same way by T. If the
image name was A,., shifted by more than an (n + 1)-box, we are looking at
overlaps of pairs of cycles of types (L;,L;,,), (L., Li.,o. ), - s (Lis o Ly ). If
n > j, by our choice this sequence is nearly uniformly distributed over the space
of all pairs. Hence, at most (Si(n +1)S.(n + 1)) (1+27"°") of the A,’s in this
overlap could code well. This is a conflict. Hence, the shift is by less than an
(n +1)-box, and most A,’s, no matter how crossed by TQ, must code to the same
shift of an A,. Asin the earlier case we can now show that the shift does not vary
in n and so S = T{~ T4 for some ! and k.

This now finishes our construction and the proof of our main result.

Tueorem 4.2. If T is a Bernoulli shift then C(C(T))={T,|i € Z}.
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Here are some further questions on centralizers that might be approached by
similar constructive techniques and coding arguments.

(a) What is C(T) for T a Bernoulli shift? We know S € C(T) implies S is
weak mixing. Is this enough, i.e., for any weak mixing S is there an §’
isomorphic to S in C(T)? Or more strongly, for any group G of weakly mixing
transformations, is there a G’ isomorphic to G in C(T)?

(b) One can argue, just as in Theorem 3.1, that for any j, i#0, TieT} is a
Bernoulli shift. Thus, the only elements of this Z* action that are not Bernoulli
are the powers of T,. These are, in fact, zero entropy transformations. Is it
possible to build a Z? action, all of whose elements are Bernoulli, but whose
centralizer is itself?

(c) Is it possible for other than finite rank transformations to have the
property of commuting only with their powers? For example, can one get
positive entropy?

(d) What is the centralizer of an Ornstein-Shields K-automorphism? Can
such always be written as an automorphism of a complemented Bernoulli factor
and a shift of the complement.?
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