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THE SECOND CENTRALIZER OF A BERNOULLI 
SHIFT IS JUST ITS POWERS 

BY 

DANIEL J. RUDOLPH 

ABSTRACT 

If .~ is a collection of measure preserving transformations of a probability 
space, by C(~), the centralizer of ~F, we mean the group of all measure 
preserving transformations S such that TS = ST for all T E ~ We show here 
that if T is a Bernoulli shift, then C(C(T))= {T ~ l i E Z}. The proof is carried 
out 6y constructing an action of Z z, {T *, o T~li, j E Z}, where T1 is a Bernoulli 
shift of arbitrary entropy, but for any j~ O, C({T. T~}) = {T*~ o T~ l, k E Z}. The 
construction is a two-dimensional analogue of Ornstein's "rank one mixing" 
transformation. 

I. Introduction 

If ~ is a collection of  measure  preserving t ransformat ions  of  a probabil i ty 

space, by C(3-) ,  the central izer  of  if, we mean the g roup  of  all measure  

preserving t ransformat ions  S such that TS = S T  for all T E ft. What  we want  to 

show is that  if T is a Bernoull i  shift then 

(1.1) C ( C ( T ) )  = {T' li • Z } .  

The  way we will show this is by construct ing explicitly a Z 2 action genera ted  by 

two maps,  T1 and 7"2, where  T1 is a Bernoull i  shift of arbi t rary en t ropy  and for  

any j ~  0, 

(1.2) C({T,, T,J}) = {r~o  T~ I l, k • Z} .  

As  { r l  o r ~  Irk • Z}cC(T,), this implies C(C(T1))C{T~ o r ~  I/,k • z} .  This 

reduces  C(C(T1))  almost  to what  we want.  All  that  remains  is to show that  for  no  

j ~  0 is T s, • C(C(T~)).  As T~ is a Bernoul l i  shift it has a square root  T]/2 • C(T~). 

If r s, • C(C(T j ) )  then r~ t2 • C({T~, Y~}) conflicting with (1.2). 

Ornste in  in [1] and Polit in [4] have shown how to build a Z action T so that 

C({YJ}) = { T ' l i  • Z} ,  for any j ~  0. We  will bor row their me thod  and extend it 

to  a two-dimensional  construct ion.  If (1.2) were  all we asked, the const ruct ion 
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would be quite easy. We ask also, though, that T1 be a Bernoulli process whose 

entropy is at our disposal. This last condition especially adds complexity to the 

construction. 

II. Building the process 

Our construction will take the form of an increasing sequence of rectangular 

arrays A,  of symbols from P = {0,S,B}. The (n + 1)-th array will be built out of 

many copies of the n-th array, situated in various positions in a matrix of spacers 

S. These arrays convert in a standard manner to a two-dimensional process 

(T,, T2, P)  on which the T,, T2, P-name of a point is a nested sequence of copies of 

these arrays. 

We will now describe inductively how to build the A,. The array Ao is an h~(0) 

by h2(0) rectangle of O's. The parameters hi(0) and h2(0) will be fixed later to 

control the entropy of T1. Now suppose we have built An, with dimensions h~(n) 

by h2(n). To build An+~ we will need some further parameters. The first of these 

are S~(n + 1), S2(n + 1) and N~(n + 1). We will set their values later. For any 

0 < o.l <= S,(n + 1) and 0 =< o'2 =< S2(n + 1), A :,.,'2 is a copy of An with a border of 

o'~ S 's  on its left, (S~(n + 1 ) -  o'0 S 's  on its right, o'2 S 's  on top and (S2(n + 1 ) -  

o'2) S's on bottom. This we will call an (n + 1)-box with an A,  in it. Let L(n  + 1) 

be the set of all sequences l = {(o.~,o'~), (o.Lo.~),'" ",(O.~'~'+~),O.7'~n+')} of length 

N~(n + 1) from S~(n + 1)x S2(n + 1). Now 

1 1 2 2 N ( n + l )  N" ( n ÷ l )  
or 1, ~ r 2 0  0 " 1 , 0 " 2 0  . A~ . . . .  An A .  A~, '  .~'~' , 

i.e., a row of N,(n + 1) (n + 1)-boxes, each containing an An, the j-th situated at 

position o.i, o'~. Notice that fixing a name across k boxes, the (k + 1)-th box can 

be any A ~,'"2, allowing a certain independence of the T1 past. We will see later 

that if S~(n + 1) and S2(n + 1) are large enough, this will make 7"1 a Bernoulli 

shift. 

Now let Le(n + 1) = {L~(n + 1) . . .L , (n  + 1)), s = (S~(n + 1)S2(n + 1))N'('+'!, be 

all possible orderings of the elements of L (n + 1), and now 

A~ 
O 

A~ 

A~+~ = o 

O 

A'.. 
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where Lj = (l~, 12," ", l~), u = (S~(n + 1) S2(n + 1)) N'("÷~. Now, finally, to build 

An+l, we choose a parameter  N2(n + 1) and sequence Lj,, L , 2 , ' " , L j ~ . . ,  of 

elements from ~ ( n  + 1). A~+~ is 

it 
A n+l 

0 

J2 
a n + l  

O 

O 

m J,.~t.÷,~ 
n + l  

with a row of b's on the left side and bottom. 

We use this method of concatenating A , ' s  vertically because it guarantees we 

see in any span of 2 '~+'(S~(n + 1)S~(n + 1)) N~"'" rows of (n + 1)-boxes in A.÷~, 

A ,  s distributed with 1/2 ~"+~ of uniformly. This will allow S2(n) to all possible ~' 

grow fast enough to make T~ Bernoulli without growing so fast as to force infinite 

entropy. If we simply concatenated a " random"  sequence of A ~' s, the central 

limit theorem says we would need to scan the square of this many rows to get 

such a good distribution. This is too large a value for S~(n) to give both 

properties. 

At this point the only conditions we put on S~(n), S:(n), N~(n) and N2(n) 

are that 

S,(n) 1 S2(n) 1 
(2.1) h , ( n -  1) < ~ and h ~ ( n -  1) < 2 '6--; 

to ensure T~ and T2 are defined on a probability space. 

lII. Choosing the parameters so that T, is Bernoulli of arbitrary entropy 

As we indicated earlier, it is necessary to exercise a little care at this point as 

the properties we want for T~ can be antagonistic. We have a further small 

difficulty in that T, has no obvious generating partition. To verify T~ is Bernoulli 

we will take a sequence of partitions P~ which refine to all of the or-algebra of 

measurable sets and verify (T~, P~) is very weak Bernoulli for all l and then apply 

Ornstein's Monotone Theorem. The partition P~ will be the division of 1~ into 

sets of ~o whose (T~, T2,P) name has zero point at the same coordinates in A~, 

and the complement of these sets. Certainly VT~oP~ is the or-algebra of 

measurable sets and P ~  D P~. 
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Now we require that 

(3.1) Sl(n + 1)_->216"(h,(n - 1)+S~(n)) and 

(3.2) S2(n + 1)_-> 2'6"(S,(n)S2(n)N""')(h2(n - 1)+ S2(n)), 

for n large enough. These are explicitly how fast S,(n) and S2(n) need to grow to 

guarantee Tt is Bernoulli. To keep (2.1) we, thus, need N,(n), N2(n)> 2 32". To 

verify that (T~,P~) is v.w.b., we must consider what a future 7'1, P~ distribution 

looks like on a fixed past atom. We begin this analysis as follows. Let B be a 

fixed 7"1, Pt name across the first k n-boxes in A ~', n _--- l + 2. Let /~  be a possible 

continuation of B across the (k + 1)-th n-box in A,.  

LEMMA 3.1. The distribution of possible B, for all but 2 -8" of the B is any name 

from across A,_, situated at any position 0 < o', <= Sl(n ), each such occurring with 

within a fraction 2 -t6" of the same density. 

PROOF. Ignore those B which occur more than 2 -8" of the time within S2(n) 

of the top and bottom of the n-boxes. This is at most 2 -8" of the B. For any 

other, consider its occurrences at some fixed height in the boxes. Now the value 

(o-~ +t, o-~ +t) of the next box takes on any values up to (St(n), S2(n)) each equally 

likely. By 3.2, the value S2(n) is large enough to scan at least (2 '6n - 2) full cycles 

of types of rows A,-2. Thus, each possible name across A,_, is seen and with 

within a fraction 2 -'6" of the same density. 

COROLLARY 3.2. For all but 2 -*~ of the 7"1, P, names B across the first k boxes of 

A., n>-l + 2, the distribution of possible names B across the remaining N,(n ) -  k 

boxes is within 2 -16" in J of the independent concatenation of the distribution of 

names across A" , situated in n-boxes independently at positions 0 < ~r, <= S,(n ). 

PROOF. Follows from repeated application of Lemma 3.1 across the remain- 

ing N t ( n ) - k  n-boxes. 

COROLLARY 3.3. Let B be a fixedpast T~, P, name, ending after the first k boxes 

of A., n >- l + 2. The distribution of possible future names B across the remaining 
(N l (n ) -  k) n-boxes, for all but 2 -8"÷' of the B, is within 2 -'6"*' in d of the 

independent concatenation of the distribution of T1, P~ names across A,_~ situated 

independently at positions 0 <= ~r~ <-<_ S,(n ) in n-boxes. 

PROOF. Apply Lemma 3.1 inductively to ever longer past names across 

arrays, summing the errors. 

Now we know what future names look like. It remains to show that S,(n) is 
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large enough to get them all close in d. Here we apply the "nesting argument" 

Ornstein used in [3] and Weiss applied to the equivalence theory in [5]. 

Let B1 and B2 be past atoms of (TI, P 3. Suppose B~ ends jr positions into the 

k~-th n-box of A,, and B2 ends j2 positions into the k2-th n-box where n => l + 2 

and ki-<_N~(n)(1-2-8"), and BI and B2 extended across the remaining 

h~(n - 1)+ S~(n)-jr and h ~(n - 1)+ Sdn ) - j2 coordinates in the kl-th and k2-th 

n-boxes are in the good set of Corollary 3.2. We want to match in d the future 

distributions of B~ and B2 out to the end of the overlap of the An's they lie in, 

i.e., for length 

(3.4) L = rain (h~(n)- k,(hdn - 1)+ S~(n))-j,). 

By Corollary 3.2 this amounts to showing that the independent concatenation 

more than 2 8n times of the distribution of names across AM_I situated indepen- 

dently in n-boxes at positions 0-< tr~ _-< S~(n) is close in d to itself shifted by 

Ij l  - j21 places. 

This pairing of coordinates along the distributions breaks into overlaps of 

n-boxes, half of which are longer than ~ (h l (n -  1)+ S~(n)). On these longer 

overlaps, as S~(n)>=2~6"(h~(n-2)+Sdn)), we can pair all but 2 -'6M of the 

positions trl in the first n-box with o-'~ in the second n-box so that in this overlap 

(n - 1)-boxes across the name from A,_~ align with each other. Thus, on these 

sections we can match the two distributions within 2 -16" in d. On the remaining 

sections, less than half the coordinates, the positions of (n - D-boxes are now 

fixed, but everything inside the (n - 1)-boxes is independent of what we have 

done. On each of these sections re-apply the argument, but on (n - 1)-boxes, to 

match within 2 -~6~"-" a further quarter of the coordinates. Continue down to 

(n - 2)-boxes and so on. If n _-> 2(l + 2), after n/2 iterations, on all but 2 -t"/2~ of 

the coordinates, we have matched in d to within 2 -~"/2). All but 2 -""÷1 of the past 

atoms B~ satisfy Corollary 3.3 and end 2 -"" from the edges of A.. This shows 

(T,  P3 is v.w.b, and completes the following theorem. 

THEOREM 3.1. The transformation TI is isomorphic to a Bernoulli shift. 

PROOF. By the above, (T~,Pt) is v.w.b, for all /. The P's refine to the full 

algebra of measurable sets. By Ornsteins Monotone Theorem (2), T~ is 

Bernoulli. 

Our next task is to compute h (T~), the entropy of T1. As we have no generator 

for T,  it is again necessary to compute h(T,,P3, and use the fact that 

h ( T~) = l i m , ~  h ( T~, P~). 
By our argument that (T~,P 3 is v.w.b, we know that for large enough n, (T~,P~) 
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is as close as we like in d and, hence, entropy to the independent concatenation 
of the distribution of TI, Pz -names across A~-I in n-boxes situated independently 
at positions 0_-< tr~-< Sl(n).  The entropy of this latter process is 

lira i [ ln (h l (n -  1)+ S , ( n ) ) ( ( S ~ ( n ) 2  h'~' ......... A_,,) [h,(. N÷s,,,] ) ] 

(3.5) 
_ h (dist. acrossA._ 0 

hl(n - 1)+ Sl(n)  " 

The distribution of names across A._I is the independent concatenation of 
names across An-2, situated in boxes at positions 0 =< o-1 <= S1(n - 1). Hence, 

h (dist. across A._~) = N~(n - 1)ln(S~(n - 1). 2 htdi . . . . . . . . .  A_2) ) 

= N1 (n - 1) In (S~ (n - 1)) + Nl(n  - 1)h (dist. across A._2). 

So (3.5) is equal to 

N~(n - 171n (S~(n - 1)7 + Nl(n  - 1)h (dist. across a.-2) 
h~(n - 1)+ Sl(n)  hl(n - 1)+ Sl(n)  

(3.6) 
hl(n - 17 [ In (S,(n - 17) h (dist. across A.-2) '~ 

= hl(n - 1) + Sl(r/) \ h l (n  - 2) + Sl(n - 1) + h~(n - 2) + S~(n - 1)/" 

Continuing inductively down to l + 2, (3.6) is equal to 

//h (dist. across A,+1)~ { [:[ h~(i7 1)'~/ 
\ , ~ 2 h l ( i ) +  S~(i + \ h l ( l  + l )+  Sl(l  + 2)] 

(3.7) 

Thus, 

(3.8) 

By (1.1), 

and 

.-1 hi(i)  f In (S,(i)) 
+ ,~+2 h , ( i )+  S,(i + 1) \h , ( i  + 1)+ S , ( i ) / "  

( ~ hi(i)  ) h (dist. acrossA,÷l) 
h(T1,P~)= ,~ 2h , ( i )+  Sl(i + l) h,( l  + l )+  S1(/ + 2) 

h,( i)  ( I n ( S , ( / ) )  ) 
+,= 2h1(i)+ $1(i +1)  h l ( i - 1 ) +  S~(i)+ l " 

I~ ° h~(i) 
• ~ h~(i)+ Sl(i + 1) > 0  
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h,(i) ( :n_(1S)'O~ )<oo  
2 h , ( i )+ S,(i + 1) h,( ,(i) i=O 

SO 

(3.9) h ( T ) = l i m h ( T , , P t )  = lim 
h (dist. of P, across At+l) 

h,(l + 1) + S,(l + 2) 

Now to show that this value can be arbitrary. 
Ignoring the small parts of A,+~ near the borders of the boxes, 

h(dist, of P, across A, . , )  is close to In [(hff/) + S2(1 + 1))(Salt + 1)$2(/+ 1)) ~'"÷1)] 

and so (3.9) is equal to 

(3.10) 

By (3.2), 

( In(h2(/)+ S2(l + 1)) N,( l  + 1)In (S,(l + 1)$2(/+ 1))) 
I im \h , ( l  + 1) + S,(l + }) + h,(l + 1) + Sl(l + 2) 

= lim !n (S2(I + 1)) 
,_~ h,(l) 

In (S~(l + 1)) = In [K,.,(S,(l)Sdl)'~'"')(hffl - 1) + Sd/))] 
h,(l) h,(l) 

where all we require of K,+, is that it is => 2 '6°÷~ for large enough I. Notice this is 

independent  of how large Nff l )  is. But this is 

In (K,+,) + In (h2(l - 1) + S2(l)) + In (S,(l)) + In (S2(I)) 
h,(l) h,(l - 1) + S,(l) h,(! - 1) + S,(I)" 

NOW 

In (h2(l - 1) + $ 2 ( l ) )  + In (SI(I)) < 2 
hi(l) h,(l -- 1) + S,(l) = 2 '6'. 

Thus 

In (K,.,) n(S2(l + 1)) ( h , ( l -  1) "~ (n(S2(l))'~ + + a, 
h,(l) = \ h , ( l -  1)+ S, ( l ) /  \h , ( l  - 1)/ h,(l)  

where a, < 1/2 '6" depends only on parameters up to the / - th ,  and (In (Kt. ,))/hl(l)  
can be as small as we like up to a point, after which it can be any value => 2 -16'. 

Thus, choosing the K,.,  properly, and hi(0), hal0), $1(1) and Sdl ) ,  
lim,~® [(In ( S d l ) ) ) / h , ( l -  1)] can be made to converge to any value we like in 
(0,o@ and this can be done even with N d n )  growing as rapidly as we like. This 

completes the following result. 
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THEOREM 3.2. The entropy of  I"1 can be chosen arbitrarily, even with the 

parameter N f f n )  growing as rapidly as we like. 

IV. Forcing C(T. T2/), ]: 0 to be trivial 

This argument is essentially a direct translation into Z 2 of the proof for a 

similar Z action in [1] and [4]. Thus, at points in the argument where standard 

techniques are used we will be brief. 

At this point what remains at our disposal in the construction is that N f f n )  can 

be made as large as we like, and the sequence Lj,, Lj2,'" .,L,~,.> of elements of 

~?(n) ( = the set of possible vertical cycles through the various rows of n-boxes 

Aj , 2 ._~ ) remains to be chosen. We will choose these ,_~ = A ~'-'~ . . . . . .  A "':'" "'~"") 

parameters to force C({T1, T~})= {T~ oT~ I l ; k  ~ Z} for any j ~ 0 .  

The idea here is to choose N2(n)  and Lj,, - . . ,  L#~,.> inductively so that any two 

different rectangular sections of A,  of sufficient size have 7",, T2, P-names 

bounded apart by some fixed constant in d. This forces any finite coding of a/ '1, 

Tz, P-name to within this bound in d of another/ '1,  T2, P-name to be simply a 

shift of this name by some vector (l, k). This is enough for C({T1,/'2}) and a little 

more care gives the result for C({T~, T~}). 

LEMMA 4.1. The parameters N2(n ), Lj,, .  . ., Lj~,.> can be chosen so that for any 

t, l, i and k, N 2 ( n ) =  t > N2(n)2 -~6", 

0 < l < n ! ,  

O< i <= N2( n ) - tl and 

0 < k < i ,  

the sequence of pairs 

(Lj,, Lj,_k ), (Lj,÷,, L~,.,_, )," " ,  (Li ..... Lj ...... ) 

is within 2 -~6" of uniformly distributed over ~ ( n ) x  ~ ( n ) ,  and the sequence 

Lj,, Lj .... . . . ,  Lj .... is within 2 -16" of uniformly distributed over ~ ( n  ). 

PROOF. The set ~ ( n )  is now fixed and contains s elements. Consider the set 

of all sequences of length N2 of elements from ~ ( n ) ,  with the counting measure. 

Fix values t, l, i and k as above. Look at the sequence of pairs 

(Li,,Li,_ ~), (Lj .... Lj ..... ) , . . - ,  (L~ ..... Lj .. . . .  ) .  

This can be broken into two disjoint subsequences, each at least t/3 long, in each 
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of which no L~ occurs more than once. Now what is the probability on such a 

subsequence that the pairs are not within 2 -16~ of uniformly distributed? Each 

term in the subsequence is independent of all the others, so this probability 

computes to be bounded by 

(4.1) 2~%2{h~s-~ 2 .... ),s 2(1+2 .... (s 2 1)1),...,s-2(1+2 16n(s2-1)'))-h(S-2,s 2,--,,S-2))N22 '6n3 ' 

where eN2 70. But N2 

h (S-=(1 --2-16"), S-2(1 + 2-16" (S a -  1)-'),"" ", S-2(1 + 2-16"(S z -  1)-1)) 

- h ( S  2, S - 2 , . - . , S - 2 ) < 0 .  

Thus, there are constants C and "y < 0  so that (4.1) is bounded by C . 2  "N~. 

Now the probability that there exists t,/ ,  i and k so that the desired condition 

on pairs is not satisfied is thus at most 

(4.2) 2. n !. N 3- C 2 ~N~ . 

This goes to zero as N 2 ~ .  Hence, if N2 is large enough, we can find the 

necessary sequence. The second condition follows from the first. 

Choose N2(n), Lj,, ..., Lj,,:,., to satisfy this lemma. 

LEMMA 4.2. There is a fixed constant a > 0  so that any two different 

rectangular subarrays of at least 2 -s" of A ,  are at least a apart in d. 

PROOF. In the overlap of two copies of Ao which do not line up exactly there 

is always a d difference of at least 2(h1(0)+ h2(0)-1)/hl(O)h2(O). 

Suppose any time we look at two rectangular sections of An which occupy at 

least 2 -8" of A, ,  they differ in d by a , .  We want to bound a.+l in terms of a , .  

Consider the a distance between two rectangular sections of at least 2 -~"÷z~ of 

A.+I. All but at most 3 .2  -8~ of this double name is made up of rectangular 

overlaps of at least 2 -s~ of copies of A, .  A copy of A ,  in one name overlaps at 

most four copies in the other. Consider separately each subset of one quarter  of 

the overlaps which are between the A . ' s  in (n + 1)-boxes in A,+1 at positions 

(i,j) and ( i + l , j + l ' ) ,  l and l' fixed. There are various cases. (i) If l <  

hi(n)+ Sl(n + 1) and l ' <  h2(n)+ S2(n + 1), then these overlaps are between 

copies of An in exactly the same (n + 1)-boxes in A.+I. In these boxes the shifts 

(m, tr2) are identical. As l, l' ~ O, in such a set of overlaps of An 's, the d distance 

between the two rectangles is at least a . .  (ii) If l>-h l (n )+&(n+ 1) but 

/ ' <  h2(n)+ S2(n + 1), the overlaps are between different (n + 1)-boxes in the 

same row across A,+~. As 2 -~n+" of A,+~ must overlap parts of 2 -~n+" of the full 
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cycles of possible rows, in this subset of overlaps we will see all possible positions 

(o.,, o'2) matched with (o'',, o-;), each with within 2 -~"÷'~ of the same probability. 

At most (&(n + 1)$2(n + 1))-~(1 + 2 -16"÷~) of these, then, can have their copies of 

A,  matching exactly. On the rest there is again a d distance of at least a. .  (iii) If 

/ ' >  h2(n)+ S2(n + 1) but < (h2(n)+ S2(n + 1))(&(n + 1)Sz(n + 1)) ~'("÷~ then a 

part of the overlapping (n + 1)-boxes still both lie in the same A ~+~. Look at only 

this part of the overlap. Now consider a subset of overlaps where each of the 

(n + 1)-boxes in the first rectangle lies at the same relative position as all the 

others in the A~.~ containing it. A rectangle 2 -~"+~J of A,+, contains parts of 

2 -a("+u of the A ~÷,. On this sequence, by our choice of parameters in Lemma 4.1, 

each Lj is given about equal density. Thus, for each of the sets of (n + 1) 

boxes we consider, only at most (S,(n + 1)$2(n + 1))-~(1 + 2 -~6") can have copies 

of A,  matching exactly. On the rest we get a d distance of at least a, .  (iv) On the 

remaining boxes in case (ii), or if l' > 

(h2(n)+ S~(n + 1))(&(n + 1)S2(n + 1)) N~("÷~, the (n + 1)-boxes which overlap 
jj 

each other lie in different cycles A ,+~, A ~ .  Consider a subset of overlaps where 

k is fixed. This splits the overlaps of (n + 1)-boxes into two sets, each a sequence 

of pairs with types of the form (L~,,Lj,.,), (Lj,+~,Lj, .... ) . . . (L j  .... Lj, .... ), t =  > 

2-8"N2(n). By our choice, from Lemma 4.1, these pairs are nearly equidistributed 

over all the possible pairs. This says that at most (&(n + 1)&(n + 1))-~(1 + 2 -~") 

of the overlaps have copies of A,  matching exactly. On the rest they are again a ,  
apart in d. 

Combining cases (i) through (iv) we see that 

a.+, => a.  (1 - 3 .2  -8" - (S,(n + 1)&(n + 1))-'(1 - 2-'" - 2-~")) 

_>_ a .  ( 1 -  3 . 2 - 8 " -  2-'=" ( 1 -  2 -'" -2-8")) .  

This is enough to bound a.  uniformly away from 0, and completes the proof. 

THEOREM 4.1. f f  S commutes with both T, and T*2, j ~ O, then S = T', o T~ for 

some I and k. 

PROOF. To start with, assume/" = 1. Approximate S to within a 4. 10 -'2 in d 

by a finite coding of T,, T2, P-names, i.e., the set in P that S - l ( w )  lies in is 

determined all but a*. 10 -~2 of the time by which set in Vp~_~N Vq=_N'~ T,P o T2(P)q w 

belongs to, for some N large enough. Look at the occurrences in the T,, T2, 

P-name of a point to of copies of A,, where h,(n),  h2 (n )>4 .10~2N-  or-'. All 
but a 2.10 -6 of these finitely code to within a 2. 10 -6 in a of their true image name 

under S. All the finite codings are within 4 . 1 0 - , 2  of identical in d. Copies of A,  
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occupy all but 2 -16" of both the image and preimage names. Hence, an A,  

preimage covers, most of the time, pieces of copies of An in the image. These 

pieces, four at most, are rectangular, and most of the time, larger than 2 -8" of an 

A,. By Lemma 4.1, all such images, where the preimage codes well, are of 

exactly the same part of an A.. Thus, on all but (0t2.10-6+2 -8") of all but 

Ot z" 1 0 - 6 +  2 -8" Of the A,, the rectangular pieces in the image of this A,  are the 

same. Now look at an A.+, which has a fraction c~2-10-6+2 -8" of the A . ' s  in it 

coding to the same rectangular pieces. If there is more than one rectangular 

piece in this overlap, our choice in Lemma 4.1 says that, if n is large enough, this 

large a fraction of pairs of n-boxes a fixed vector apart cannot have their copies 

of A,  a fixed vector apart. We conclude that an A.  which finitely codes this well 

codes to a shift of an A,  I~y some vector (ln, k.), 1, <(ot2.10-6+2-8~)h~(n), 
k, < (az -10-6+2  -8")hz(n).  

If I, and k, are constant, we are done. Look at a copy of A,+~ which codes to a 

shift of itself by (l,+~, k.+0 and for which all but a 2" 10 -4 of the copies of A.  in it 

code to shifts of themselves by (l,, k.). As a shift by (l,, k,)  of A.  covers all but 

(or 2" 10-6+ 2 -8") of an A,, we conclude that a shift of A.+~ by T~, "-t"+'. T~ "-k"*' 
differs from itself in d by at most (a 2. 10-' + a : .  10-6+ 2 -8" + 2a : .  10 -~) < a. 

Hence l.+, = l. and k,÷, = k, by Lemma 4.2. 

To extend this to larger values of j, consider an S E C(T~, T~) and finite codes 

of T~, T~, VJq[Jo T~(P) names which approximate S in d. Such names cross a copy 

of A.  in j different ways, each one of which might code to a different part of an 

An. As before, though, a fixed way of crossing A2 must, most of the time, code to 

precisely the same part of an A,. 

Now look at an A , . ,  which codes well, most of its A . ' s  coding well. We restrict 

ourselves to subsequences A .+,, A .÷~,--., A.+l ,  of the cycles of rows in the 

preimage name of the overlap, all crossed in exactly the same way by T'2. If the 

image name was A,+~ shifted by more than an (n + 1)-box, we are looking at 

overlaps of pairs of cycles of types (L~,, Lj,., ), (Lj,÷,, Lj,+j., ) , . . . ,  (Lj,+,j, Lj,+,,., ). If 

n > j, by our choice this sequence is nearly uniformly distributed over the space 

of all pairs. Hence, at most (S,(n + 1)S2(n + 1))-'(1 + 2 -'6" ) of the A. ' s  in this 

overlap could code well. This is a conflict. Hence, the shift is by less than an 

(n + 1)-box, and most A. ' s ,  no matter how crossed by T~2, must code to the same 

shift of an A.. As in the earlier case we can now show that the shift does not vary 

in n and so S = T~ oT~ for some l and k. 

This now finishes our construction and the proof of our main result. 

THEOREM 4.2. If  T is a Bernoulli shift then C(C(T))  = {T~ l i E Z}. 
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Here are some further questions on centralizers that might be approached by 

similar constructive techniques and coding arguments. 

(a) What is C(T) for T a Bernoulli shift? We know S E C(T) implies S is 

weak mixing. Is this enough, i.e., for any weak mixing S is there an S' 

isomorphic to S in C(T)? Or more strongly, for any group G of weakly mixing 

transformations, is there a G '  isomorphic to G in C(T)? 

(b) One can argue, just as in Theorem 3.1, that for any j, i~O, T'~oT~ is a 

Bernoulli shift. Thus, the only elements of this Z 2 action that are not Bernoulli 

are the powers of 7"2. These are, in fact, zero entropy transformations. Is it 

possible to build a Z 2 action, all of whose elements are Bernoulli, but whose 

centralizer is itself? 

(c) Is it possible for other than finite rank transformations to have the 

property of commuting only with their powers? For example, can one get 

positive entropy? 

(d) What is the centralizer of an Ornstein-Shields K-automorphism? Can 

such always be written as an automorphism of a complemented Bernoulli factor 

and a shift of the complement.? 
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